翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Abel function : ウィキペディア英語版
Abel equation

The Abel equation, named after Niels Henrik Abel, is a type of functional equations which can be written in the form
:f(h(x)) = h(x + 1)
or, equivalently,
:\alpha(f(x))=\alpha(x)+1
and controls the iteration of   .
==Equivalence==
These equations are equivalent. Assuming that is an invertible function, the second equation can be written as
: \alpha^(\alpha(f(x)))=\alpha^(\alpha(x)+1)\, .
Taking , the equation can be written as
::f(\alpha^(y))=\alpha^(y+1)\, .
For a function assumed to be known, the task is to solve the functional equation for the function , possibly satisfying additional requirements, such as .
The change of variables , for a real parameter , brings Abel's equation into the celebrated Schröder's equation, .
The further change into Böttcher's equation, .
The Abel equation is a special case of (and easily generalizes to) the translation equation,〔Aczél, János, (1966): ''Lectures on Functional Equations and Their Applications'', Academic Press, reprinted by Dover Publications, ISBN 0486445232 .〕
:\omega( \omega(x,u),v)=\omega(x,u+v) ~,
e.g., for \omega(x,1)= f(x),
:\omega(x,u)= \alpha^(\alpha(x)+u) .     (Observe .)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Abel equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.